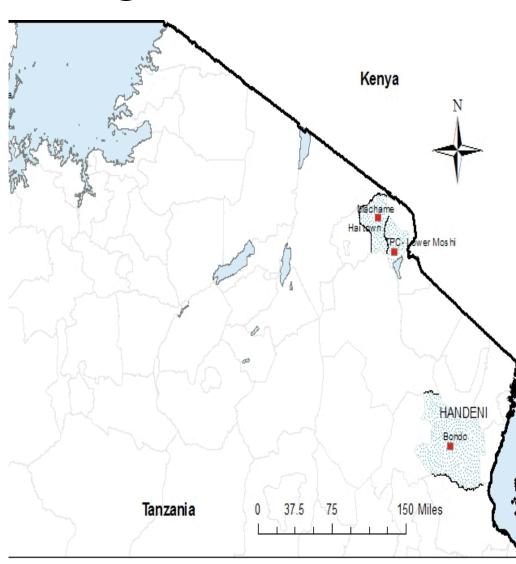

SEROPREVALENCE AND DISTRIBUTION OF DENGUE AND CHIKUNGUNYA VIRUSES IN COMMUNITIES WITH DIFFERENT MALARIA ENDEMICITY

<u>Debora C. Kajeguka,</u> Robert Kaaya, Rogathe Ndossi, Arnold Ndaro, Jaffu Chilongola, Reginald Kavishe, Karin Linda, Michael Alifranges and Franklin Mosha

Background

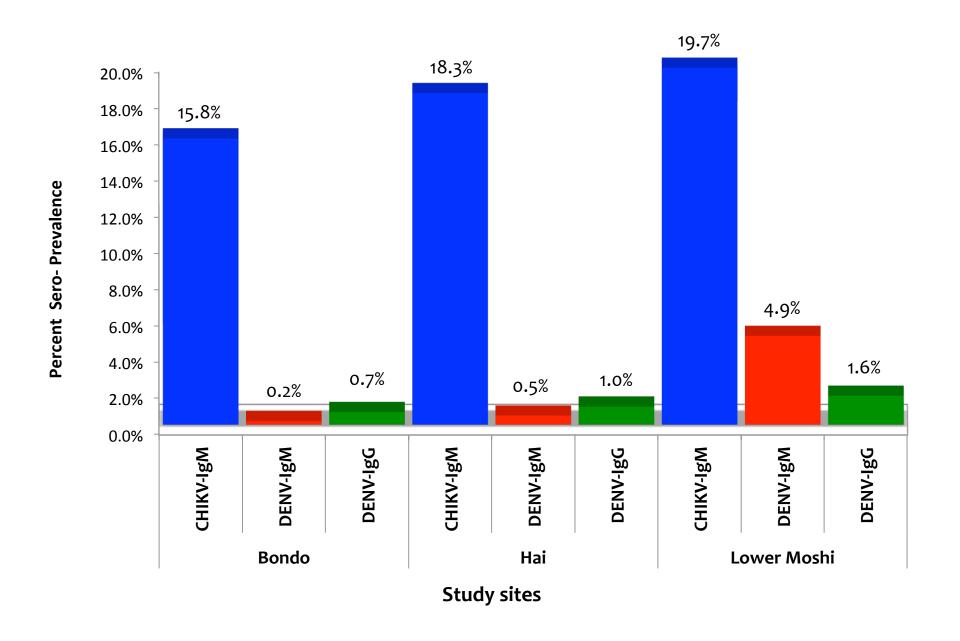
- In sub Saharan Africa where malaria is endemic most febrile cases are ascribed as malaria
- Reports on Malaria decline hence other tropical infectious disease has been on the rise
- Arbovirus
 - Including arbovirus (DENV, CHIKV etc)
 - Most prevalent vector borne infections (46.6%)
 - Aedes aegypti to less extent Aedes albopictus

Arbovirus in Tanzania


Background-continues

- Over 50% of the world's population- at risk of DENV
- Approx. 400 million individuals worldwide suffer from dengue infections every year
- Chikungunya fever has been reported from several countries around the world
 - Sporadic cases occur, but large outbreaks are infrequent
- Case fatality rate is
- Limitation in the health system
 - Inevitably results in underestimation of the true burden of arboviral diseases

Methodology


- Cross sectional study
- 780 participants of all ages
 - 450 Bondo ,Tanga
 - 208 Hai, Kilimanjaro
 - 122 Lower Moshi

- Serum samples for :-
 - Anti-Dengue (DENV, both IgM & IgG) using Capture ELISA
 - Anti-Chikungunya (CHKV, only IgM) using Indirect ELISA

RESULTS

Figure1: Dengue and Chikungunya Seroprevalence

Table1: Dengue and Chikungunya Seroprevalence

Antibody	Study sites	N	n(%)	
	Bondo-Tanga	450	4 (0.9)	
Anti-Dengue-IgM/IgG	Hai-Kilimanjaro	208	3 (1.4)	
	Lower Moshi	122	7 (5.7)	
	TOTAL	780	14 (1.8)	
Anti-Chikungunya-IgM	Bondo-Tanga	450	71 (15.8)	
	Hai-Kilimanjaro	208	38 (18.3)	
	Lower Moshi	122	24 (19.7)	
	TOTAL	780	133 (17.1)	

Table 2: Demographic and Clinical data on DENV-IgM/IgG seropositivity

	All	DENV-IgM/G+	P-value
	n	n (%)	, value
Gender	••	(/5)	
	460	40 (74.4)	0.7
Female	468	10 (71.4)	0.3
Male	312	4 (28.6)	
Age category			
2-14 years	358	3 (21.4)	0.06
≥15 years	422	11 (78.6)	
Fever			
Yes	250	6 (50.0)	0.2
No	471	6 (50.0)	
Headache		,	
Yes	308	8 (66.7)	0.09
No	413	4 (33.3)	-
Joint Pain	. ,	1 (33 3)	
Yes	262	7 (58.3)	0.1
No	459	5 (41.7)	
Nausea/Vomiting			
Yes	52	2 (16.7)	0.2
No	669	10 (83.3)	-
110		().) /	

Table 3: Demographic and Clinical data on CHIKV-IgM seropositivity

	All	CHIKV IgM+	P-value
	n	n (%)	
Gender			
Female	468	77 (57.9)	0.5
Male	312	56 (42.1)	
Age category			
2-14 years	358	66 (49.6)	0.3
≥15 years	422	67 (50.4)	
Fever			
Yes	250	40 (36.4)	0.6
No	471	70 (63.6)	
Headache			
Yes	308	75 (68.2)	< 0.01
No	413	35 (31.8)	
Joint Pain			
Yes	262	57 (51.8)	< 0.01
No	459	53 (48.2)	
Nausea/Vomiting			
Yes	52	6 (5.5)	0.4
No	669	104 (94.5)	

Discussion (1):

- Data demonstrate that there is high exposure to DENV and CHKV in areas with different malaria endemicity
- Sero-prevalence of CHKV-IgM in Bondo, Hai and Lower Moshi
 - This indicates that CHKV is prevalent in these areas
 - Presence of IgM antibodies may not necessarily indicate acute infection but suggest on-going transmission
 - This is due to the reason that IgM antibodies can be detected starting day 5 after fever onset

Discussion (2):

- Low sero-prevalence of DENV-IgM/IgG in both sites
- There is evidence that DENV is emerging
 - Dar DENV outbreak
 - No Cases before the outbreak-2010
- Established itself in epidemic transmission as it has recently been observed in recent outbreak in Dar es Salaam
- Though lower Moshi had higher seroprevalence as compared to other sites
 - Irrigation scheme
 - Vegetation

Discussion (3):

- More than 50% of the participants reported headache and joint pain, after excluding malaria positive
 - Indicating that headache and joint pain was attributed to CHIKV infection
 - PCR results
 - These results provide evidence that majority of clinical features are not due to malaria alone
 - This indicates that high number of people may be wrongly treated as malaria

Conclusion:

- First report which shows that CHKV is prevalent
- DENV circulate in low prevalence
- This calls for surveillance in order to know the real burden country wide

Limitation:

 Cross-reactivity with antibodies specific for other flaviviruses or alphavirus was not excluded

Recommendation:

Vigilant surveillance

Public awareness

Proper vector control

Reliable diagnostic tool

Critical to keep the infection rates down

Acknowledgement

SD-AFRICA

DMO - Handeni District

DMO - Hai District

DMO – Moshi Rural

CDC – Tanzania

Study Participants

